首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73784篇
  免费   7618篇
  国内免费   4281篇
电工技术   1864篇
综合类   4803篇
化学工业   16720篇
金属工艺   7371篇
机械仪表   6571篇
建筑科学   3316篇
矿业工程   1971篇
能源动力   2533篇
轻工业   8970篇
水利工程   1541篇
石油天然气   2504篇
武器工业   585篇
无线电   7404篇
一般工业技术   11988篇
冶金工业   2137篇
原子能技术   1108篇
自动化技术   4297篇
  2024年   215篇
  2023年   1477篇
  2022年   1899篇
  2021年   2568篇
  2020年   2704篇
  2019年   2573篇
  2018年   2489篇
  2017年   2921篇
  2016年   2953篇
  2015年   2986篇
  2014年   4047篇
  2013年   5233篇
  2012年   5310篇
  2011年   5937篇
  2010年   4055篇
  2009年   4177篇
  2008年   3879篇
  2007年   4474篇
  2006年   4132篇
  2005年   3306篇
  2004年   2841篇
  2003年   2450篇
  2002年   2193篇
  2001年   1698篇
  2000年   1424篇
  1999年   1183篇
  1998年   977篇
  1997年   876篇
  1996年   853篇
  1995年   661篇
  1994年   627篇
  1993年   493篇
  1992年   437篇
  1991年   302篇
  1990年   295篇
  1989年   200篇
  1988年   180篇
  1987年   99篇
  1986年   104篇
  1985年   106篇
  1984年   94篇
  1983年   64篇
  1982年   71篇
  1981年   22篇
  1980年   30篇
  1979年   18篇
  1976年   9篇
  1975年   7篇
  1959年   7篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
92.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
93.
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.  相似文献   
94.
本文借助计算机中的视觉自动检测技术来测量在果实表面的着色度,并对该颜色进行了分级,进一步的对颜色进行分析与研究,进而来获得出最终的水果果实的彩色图像,进一步的分析出对应的结果。因此,在本文中,对果实表面颜色进行了全面综合的分析与研究,进而来得出对应的果实颜色分级标准和原则。  相似文献   
95.
During curing of thermosetting resins the technologically relevant properties of binders and coatings develop. However, curing is difficult to monitor due to the multitude of chemical and physical processes taking place. Precise prediction of specific technological properties based on molecular properties is very difficult. In this study, the potential of principal component analysis (PCA) and principal component regression (PCR) in the analysis of Fourier transform infrared (FTIR) spectra is demonstrated using the example of melamine-formaldehyde (MF) resin curing in solid state. FTIR/PCA-based reaction trajectories are used to visualize the influence of temperature on isothermal cure. An FTIR/PCR model for predicting the hydrolysis resistance of cured MF resin from their spectral fingerprints is presented which illustrates the advantages of FTIR/PCR compared to the combination differential scanning calorimetry/isoconversional kinetic analysis. The presented methodology is transferable to the curing reactions of any thermosetting resin and can be applied to model other technologically relevant final properties as well.  相似文献   
96.
A Quantitative Critical Thinking (QCT) software tool was developed in this study to facilitate students’ learning of quantitative critical thinking via repeated practice by chemical engineering students reading a core module called fluid-solid systems. The software tool generated detailed calculation steps to typical engineering design problems encountered in this module that contained weaknesses, flaws or even errors. Students utilized the software tool to practice identifying these weaknesses, flaws or errors in the design solutions and then present a better or correct design by applying the concepts and knowledge acquired in the module. Since the QCT software tool was built upon an existing design software tool that was able to generate the correct, detailed design calculation steps to design problems, students were able to check their own design calculations against those presented by the software tool during this second learning step, thereby engaging in and learning quantitative critical thinking via a repeated practice approach. The software tool was successful in enhancing the performance of second-year undergraduate students in solving a question that required quantitative critical thinking in the final examination of the module. The average percentage scores achieved by students for the question who reported higher frequencies of usage of the software were generally higher than those who reported lower frequencies of usage or did not utilize the software tool throughout the semester.  相似文献   
97.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   
98.
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII−GdIII distances measured by double electron–electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII−GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.  相似文献   
99.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
100.
Broadband dielectric spectroscopy (BDS) was applied to study polarization phenomena in alkaline silicate glasses, in particular, properties and structure of subsurface (anodic) polarized layers forming in poling with deposited film electrodes of different structures. A model of poled glasses which does not contradict experimental data is proposed. In accordance with the model, a poled glass is presented as two resistor-capacitor circuits in a series connection, one of which is the polarized layer and another is the rest of the sample. It is found that the electric properties of the layers essentially depend on the structure of the anodic electrode used in glass poling. It is also shown that the dielectric response of poled glass samples is mainly determined by the electric properties of the submicron polarized layers and this gives an opportunity to reveal specific properties of the layers rather than ones of the glass sample bulk. Revealed temperature dependence of DC conductivity of the polarized layers obeys Arrhenius's law, and determining activation energy does not depend on the electrode. Finally, it is noted that today above-mentioned information about polarized layers can be obtained only by BDS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号